M1.

```
1/2 }\times5x\times3x\times\operatorname{sin}3
or Height = 3x x sin 30
or Height = 1.5x
oe
Height may be on the diagram
```

$1 / 2 \times 5 x \times 3 x \times \sin 30=45$
or $3.75 x^{2}=45$
oe
$x^{2}=45 \div 3.75$
or $x^{2}=12$
oe
$3.46(4 \ldots)$ or 3.5 or $\sqrt{12}$ or $2 \sqrt{3}$

Additional Guidance

Ignore further working if $\sqrt{12}$ is followed by an attempt to simplify the surd

M2.

$$
\frac{40}{360} \times \pi \times 18^{2} \text { or } 113 .(\ldots)
$$

oe
$\frac{1}{2} \times 18^{2} \times \sin 40$ or 104.(...)
oe
$8.9 \ldots$ or 9

M3.(a) Sight of $x^{2},-x y,+x y$ and $-y^{2}$ plus some indication that $x y$ terms cancel.

$$
\operatorname{Eg} x^{2}-x y+x y y-y^{2}
$$

Minimum would be

$$
x^{2}-x y+x y-y^{2}=x^{2}-y^{2}
$$

(b) $\frac{1}{2} \times 5 \sqrt{ } 2 \times(\sqrt{ } 3-1) \times \frac{\sqrt{3}+1}{2 \sqrt{2}}$

Correct substitution into $1 / 2 a b \sin C$
$(\sqrt{3}-1)(\sqrt{3}+1)=3-1(=2)$
This must be evaluated at some stage

Clear indication that the expression cancels down to a fraction equivalent to $\frac{5}{2}$
Must show or state cancelling (strand(ii)) for justifying a result.
Cancelling can be done at any stage

Alternative method

Height $=(\sqrt{3}-1) \times \frac{\sqrt{3}+1}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}$
Must get this correct to show explicitly or implicitly (eg could rationalise denominator) that $(\sqrt{3}-1)(\sqrt{3}+1)=3-1(=2)$

$$
\frac{1}{2} \times 5 \sqrt{ } 2 \times \text { their } \frac{1}{\sqrt{2}}
$$

Clear indication that the expression cancels down to a fraction equivalent to $\frac{5}{2}$ Must show or state cancelling (strand(ii)) for justifying a result.
Cancelling can be done at any stage
Q1

M4.
(a)

$$
\begin{aligned}
(\cos B= & \frac{\left(3 \sqrt{2}^{2}\right)^{2}+(\sqrt{2})^{2}-(\sqrt{14})^{2}}{2 \times 3 \sqrt{2} \times \sqrt{2}} \\
& (\sqrt{ } 14)^{2}=(3 \sqrt{ } 2)^{2}+(\sqrt{ } 2)^{2}-2 \times 3 \sqrt{ } 2 \times \sqrt{ } 2 \times \cos B
\end{aligned}
$$

$$
\begin{aligned}
& \frac{18+2-14}{2 \times 3 \times 2} \\
& \\
& 14=18+2-12 \times \cos B \\
& \text { allow one error } \\
& \text { oe }
\end{aligned}
$$

 \(\cos B=\frac{6}{12}=\frac{1}{2}\) and \(B=60^{\circ}\)
 or \((B=) \cos ^{-1}(1 / 2)=60^{\circ}\)
 (b) $\quad \sin 60=\frac{\sqrt{3}}{2}$ seen

$$
\frac{1}{2} \times 3 \sqrt{2} \times \sqrt{2} \times \sin 60
$$

$$
\frac{3 \sqrt{3}}{2}
$$

oe

M5.(a) $\pi \times 9.2 \times 9.2$ or $265 .(\ldots)$
oe
$\frac{125}{360} \times \pi \times 9.2 \times 9.2$
oe
[92, 92.5]
(b) $1 / 2 \times 9.2 \times 9.2 \times \sin 125$
oe
[34.6, 34.7]
[57, 58]

$$
\begin{aligned}
& \frac{1}{2} \times w \times 2 w \times \sin 30(=18) \\
& \text { oe e.g. } 12 w^{2} \sin 30=36 \\
& \text { e.g. } 2 \sin 30=\frac{18}{w^{2}}
\end{aligned}
$$

M1
$w^{2}=36$ or $w=6$ or $2 w=12$
their $6^{2}+$ their 12^{2}
$-2 \times$ their $6 \times$ their $12 \times \cos 30$
(= $=[55.29,55.3])$
their $36+4 \times$ their 36
$-4 \times$ their $36 \times \cos 30$
($=$ [55.29, 55.3])
$\sqrt{\text { their }[55.29,55.3]}$
Dep on previous M1
Do not allow if from incorrect working
e.g. $\sqrt{36 \cos 30}$ is MO Dep
[7.4, 7.44]
ft their w if 2nd and 3rd M1 gained
A1ft
[5]

M7. $\frac{1}{2} \times 12 \times 14 \times \sin 52$ oe

$$
h=12 \sin 52(=9.456 \ldots) \text { and } \frac{1}{2} \times 14 \times h
$$

[66, 66.3]
cm^{2}

$$
\begin{aligned}
& \text { M8.(a) } \begin{aligned}
& \frac{9^{2}+5^{2}-11^{2}}{2 \times 9 \times 5} \quad \begin{array}{c}
(=\cos x) \\
11^{2}=9^{2}+5^{2}-2 \times 9 \times 5 \cos x
\end{array} \\
&-0.16(6 \ldots) \text { or }-0.17 \\
& \text { Can be implied from answers of } 99 .(\ldots) \text { with } 1 \text { st } M 1 \text { awarded } \\
& \text { or }-\frac{15}{90} \text { or }-\frac{1}{6}
\end{aligned}
\end{aligned}
$$

[99.59, 100]
(b) $\frac{1}{2} \times 9 \times 5 \times \sin$ (their 99.6)

$$
\begin{aligned}
& \frac{1}{2} \times 9 \times 5 \times \sin (\text { their } 99.6) \times 4 \text { oe } \\
& \\
& \quad \frac{1}{2} \times 9 \times 5 \times \sin (\text { their } 99.6) \times 2 \\
& + \\
& +\frac{1}{2} \times 9 \times 5 \times \sin (180-\text { their } 99.6) \times 2
\end{aligned}
$$

[88.6, 89]

M9. $\quad \cos 57=\frac{A D}{9}$ or $\sin 57=\frac{A B}{9}$ seen

$$
\begin{aligned}
& A D=9 \cos 57 \text { or } \sqrt{9^{2}-(9 \sin 57)^{2}} \text { or } 4.9 \ldots \\
& A B=9 \sin 57 \text { or } \sqrt{9^{2}-(9 \cos 57)^{2}} \text { or } 7.5 \ldots
\end{aligned}
$$

M1 dep
[18.3, 18.8]

$$
\begin{aligned}
& \frac{9}{\sin (180-82)} \times \sin 39(=5.71 \ldots) \\
& \quad \frac{9}{\text { or }^{\sin (180-82)}} \times \sin 43(=6.198 \ldots)
\end{aligned}
$$

Calculating length of $C D$ or equiv calc using sine rule for $B C$

A1

M1
$\frac{1}{2} \times 9 \times$ their $5.7 \times \sin 43$
or $\frac{1}{2} \times 9 \times$ their $6.198 \times \sin 39$
or $\frac{1}{2} \times$ their $5.7 \times$ their $6.198 \times \sin 98$
M1 dep
[17.4, 17.6]
[35.7, 36.4]
Award 7 marks if all 3 answers are in range unless there is clear evidence of incorrect working

M10.Scale factor $\frac{18}{8}$ or $\frac{8}{18}$ seen oe

$$
11.25 \text { may be on diagram }
$$

or $A C=5 \times 2.25(=11.25)$
or angle $B=$ angle E seen
or angle $A=$ angle D seen
Use of cosine rule to work out any angle

$$
\begin{aligned}
& 8^{2}=4^{2}+5^{2}-2 \times 4 \times 5 \times \cos C \\
& 18^{2}=9^{2}+\text { their } 11.25^{2}-2 \times 9 \times \text { their } 11.25 \times \cos C \\
& 4^{2}=5^{2}+8^{2}-2 \times 5 \times 8 \times \cos D \\
& 9^{2}=18^{2}+\text { their } 11.25^{2}-2 \times 18 \times \text { their } 11.25 \times \cos A \\
& 5^{2}=4^{2}+8^{2}-2 \times 4 \times 8 \times \cos E \\
& \text { their } 11.25^{2}=9^{2}+18^{2}-2 \times 9 \times 18 \times \cos B
\end{aligned}
$$

Correct rearranging of formula to isolate cosine

$$
\begin{aligned}
& \frac{4^{2}+5^{2}-8^{2}}{2 \times 4 \times 5} \text { or }-\frac{23}{40} \\
& \frac{9^{2}+\text { their } 11.25^{2}-18^{2}}{2 \times 9 \times \text { their } 11.25} \text { or }-\frac{23}{40} \\
& \frac{5^{2}+8^{2}-4^{2}}{2 \times 5 \times 8} \text { or } \frac{73}{80} \\
& \frac{\text { their } 11.25^{2}+18^{2}-9^{2}}{2 \times \text { their } 11.25 \times 18} \text { or } \frac{73}{80} \\
& \frac{4^{2}+8^{2}-5^{2}}{2 \times 4 \times 8} \text { or } \frac{55}{64}
\end{aligned}
$$

$$
\frac{9^{2}+18^{2}-\text { their } 11.25^{2}}{2 \times 9 \times 18} \text { or } \frac{55}{64}
$$

Obtaining one angle

$$
\text { eg } \begin{aligned}
C & =125 .(\ldots) \text { or } 125 \\
B & =30 .(\ldots) \text { or } 31=E \\
A & =24 .(\ldots) \text { or } 24=D
\end{aligned}
$$

May be seen on diagram

Substitution into $\frac{1}{2} a b \sin C$

$$
\begin{aligned}
& \frac{1}{2} \times \text { their } 11.25 \times 9 \times \sin \text { their } 125 \\
& \frac{1}{2} \times \text { their } 11.25 \times 18 \times \sin \text { their } 24 \\
& \frac{1}{2} \times 18 \times 9 \times \sin \text { their } 31 \\
& \text { oe } \\
& \frac{1}{2} \times 4 \times 5 \times \sin \text { their } 125 \\
& \frac{1}{2} \times 5 \times 8 \times \sin \text { their } 24 \\
& \frac{1}{2} \times 4 \times 8 \times \sin \text { their } 31
\end{aligned}
$$

[41, 42]

