M1.

 $\frac{1}{2} \times 5x \times 3x \times \sin 30$ or Height = $3x \times \sin 30$ or Height = 1.5xoe Height may be on the diagram **M1** $\frac{1}{2} \times 5x \times 3x \times \sin 30 = 45$ or 3.75 $x^2 = 45$ oe M1 $x^2 = 45 \div 3.75$ or $x^2 = 12$ oe **M1** 3.46(4...) or 3.5 or $\sqrt{12}$ or $2\sqrt{3}$ A1

Additional Guidance

Ignore further working if $\sqrt{12}$ is followed by an attempt to simplify the surd

[4]

A1

M2.

$$\frac{40}{360} \times \pi \times 18^2 \text{ or } 113.(...)$$

oe

 $\frac{1}{2} \times 18^2 \times \sin 40 \text{ or } 104.(...)$

oe

M1

8.9... or 9

[3]

M3.(a) Sight of x^2 , -xy, +xy and $-y^2$ plus some indication that xy terms cancel.

Eg $x^2 - xy + xy - y^2$

Minimum would be

$$x^2 - xy + xy - y^2 = x^2 - y^2$$
B1

(b)
$$\frac{1}{2} \times 5\sqrt{2} \times (\sqrt{3} - 1) \times \frac{\sqrt{3} + 1}{2\sqrt{2}}$$

Correct substitution into ½ absinC

B1

$$(\sqrt{3} - 1) (\sqrt{3} + 1) = 3 - 1 (= 2)$$

This must be evaluated at some stage

B1

5 Clear indication that the expression cancels down to a fraction equivalent to 2 *Must show or state cancelling (strand(ii)) for justifying a result. Cancelling can be done at any stage*

Q1

Alternative method

Height =
$$(\sqrt{3} - 1) \times \frac{\sqrt{3} + 1}{2\sqrt{2}} = \frac{1}{\sqrt{2}}$$

Must get this correct to show explicitly or implicitly (eg could rationalise denominator) that $(\sqrt{3} - 1)(\sqrt{3} + 1) = 3 - 1 (= 2)$

B1

$$\frac{1}{2} \times 5\sqrt{2} \qquad \frac{1}{\sqrt{2}}$$
× their $\sqrt{2}$

oe

5Clear indication that the expression cancels down to a fraction equivalent toMust show or state cancelling (strand(ii)) for justifying a
result.
Cancelling can be done at any stage

B1ft

M4.

(a)

$$(\cos B =) \frac{(3\sqrt{2})^{2} + (\sqrt{2})^{2} - (\sqrt{14})^{2}}{2 \times 3\sqrt{2} \times \sqrt{2}}$$

$$(\sqrt{14})^{2} = (3\sqrt{2})^{2} + (\sqrt{2})^{2} - 2 \times 3\sqrt{2} \times \sqrt{2} \times \cos B$$
M1

$$\frac{18+2-14}{2\times3\times2}$$

$$14 = 18+2-12\times\cos B$$
allow one error
oe
MIdep
$$\cos B = \frac{6}{12} = \frac{1}{2} \text{ and } B = 60^{\circ}$$
or $(B =) \cos^{-1}(\frac{1}{2}) = 60^{\circ}$
A1
$$\frac{1}{2}\times3\sqrt{2}\times\sqrt{2}\times\sin 60$$
MI
$$\frac{1}{2}\times3\sqrt{2}\times\sqrt{2}\times\sin 60$$

[6]

	<u>3√3</u> oe	A1
M5. (a)	$\pi \times 9.2 \times 9.2$ or 265.() oe	M1
	$\frac{125}{360} \times \pi \times 9.2 \times 9.2$ oe	M1dep
	[92, 92.5]	A1
(b)	½ × 9.2 × 9.2 × sin 125 oe	M1
	[34.6, 34.7]	A1
	[57, 58] ft their (a) – [34.6, 34.7] Allow rounding of final answer	Alft

A1ft

$\frac{1}{2} \times w \times 2w \times s$		
$Z \times W \times 2W \times S$		
	oe e.g.1 2w²sin 30 = 36 18	
	e.g.2 sin $30 = \frac{10}{w^2}$	
		M1
$w^2 = 36 \text{ or } w =$	6 or 2 <i>w</i> = 12	A1
their 6 ² + their 1	2 ²	
$-2 \times$ their 6 \times th	pair $12 \times coc 30$	
	IEII 12 X COS SU	
(= [55.29, 55.3]		
	their 36 + 4 × their 36	
	$-4 \times \text{their } 36 \times \cos 30$	
	(= [55.29, 55.3])	M1
√their [55.29,55	0.3]	
	Dep on previous M1	
	Do not allow if from incorrect working	
	e.g. √36 cos30 is M0 Dep	
		M1dep
[7.4, 7.44]		
	ft their w if 2nd and 3rd M1 gained	
		A1ft
M7. $\frac{1}{2} \times 12 \times 14 \times sin$		
M7. \angle x 12 x 14 x si		
	$h = 12 \sin 52 (= 9.456) \text{ and } \frac{1}{2} \times 14 \times h$	
[66, 66.3]		
-		

 $\rm Cm^2$

[3]

M1

A1

B1

[5]

[6]

$$\mathbf{M8.(a)} \quad \frac{9^{2} + 5^{2} - 11^{2}}{2 \times 9 \times 5} \quad (= \cos x) \\ 1^{1^{2}} = 9^{2} + 5^{2} - 2 \times 9 \times 5 \cos x$$

$$\mathbf{M1}$$

$$-0.16(6...) \text{ or } -0.17 \\ Can be implied from answers of 99.(...) with 1st M1 awarded
or $-\frac{15}{90} \text{ or } -\frac{1}{6}$

$$\mathbf{M1}$$

$$(99.59, 100)$$

$$\mathbf{M1}$$

$$(99.59, 100)$$

$$\mathbf{M1}$$

$$\frac{1}{2} \times 9 \times 5 \times \sin (\text{their } 99.6) \times 4 \text{ oe}$$

$$\frac{1}{2} \times 9 \times 5 \times \sin (\text{their } 99.6) \times 4 \text{ oe}$$

$$\frac{1}{2} \times 9 \times 5 \times \sin (\text{their } 99.6) \times 4 \text{ oe}$$

$$\frac{1}{2} \times 9 \times 5 \times \sin (\text{their } 99.6) \times 2$$

$$+ \frac{1}{2} \times 9 \times 5 \times \sin (180 - \text{their } 99.6) \times 2$$

$$\mathbf{M1}$$

$$(88.6, 89)$$

$$\mathbf{M1}$$$$

M9. $\cos 57 = \frac{AD}{9}$ or $\sin 57 = \frac{AB}{9}$ seen oe Note:

AQA GCSE Maths - Sine Rule - Use 1-2 ab Sin C

$$AD = 9\cos 57 \text{ or } \sqrt{9^2 - (9\sin 57)^2} \text{ or } 4.9...$$
$$AB = 9\sin 57 \text{ or } \sqrt{9^2 - (9\cos 57)^2} \text{ or } 7.5...$$
M1

$$\frac{1}{2} \times 9 \cos 57 \times 9 \sin 57$$

oe
Area of right-angled triangle

$$\frac{9}{\sin(180-82)} \times \sin 39(=5.71...)$$

$$rac{9}{sin(180-82)} \times sin43 (= 6.198...)$$

M1 dep

A1

 $\frac{1}{2} \times 9 \times \text{their } 5.7 \times \sin 43$ or $\frac{1}{2} \times 9 \times \text{their } 6.198 \times \sin 39$ or $\frac{1}{2} \times \text{their } 5.7 \times \text{their } 6.198 \times \sin 98$

M1 dep

[17.4, 17.6]

[35.7, 36.4]

Award 7 marks if all 3 answers are in range unless there is clear evidence of incorrect working

A1

M10.Scale factor $\frac{18}{8}$ or $\frac{8}{18}$ seen oe 11.25 may be on diagram

or $AC = 5 \times 2.25 (= 11.25)$

or angle B = angle E seen

or angle A = angle D seen

Use of cosine rule to work out any angle

$$8^{2} = 4^{2} + 5^{2} - 2 \times 4 \times 5 \times \cos C$$

$$18^{2} = 9^{2} + \text{their } 11.25^{2} - 2 \times 9 \times \text{their } 11.25 \times \cos C$$

$$4^{2} = 5^{2} + 8^{2} - 2 \times 5 \times 8 \times \cos D$$

$$9^{2} = 18^{2} + \text{their } 11.25^{2} - 2 \times 18 \times \text{their } 11.25 \times \cos A$$

$$5^{2} = 4^{2} + 8^{2} - 2 \times 4 \times 8 \times \cos E$$

$$\text{their } 11.25^{2} = 9^{2} + 18^{2} - 2 \times 9 \times 18 \times \cos B$$

Μ	1

B1

Correct rearranging of formula to isolate cosine

$$\frac{4^{2} + 5^{2} - 8^{2}}{2 \times 4 \times 5} \quad \text{or} \quad -\frac{23}{40}$$

$$\frac{9^{2} + their \, 11.25^{2} - 18^{2}}{2 \times 9 \times their \, 11.25} \quad \text{or} \quad -\frac{23}{40}$$

$$\frac{5^{2} + 8^{2} - 4^{2}}{2 \times 5 \times 8} \quad \frac{73}{80}$$

$$\frac{their \, 11.25^{2} + 18^{2} - 9^{2}}{2 \times their \, 11.25 \times 18} \quad \text{or} \quad \frac{73}{80}$$

$$\frac{4^{2} + 8^{2} - 5^{2}}{2 \times 4 \times 8} \quad \text{or} \quad \frac{55}{64}$$

$$\frac{9^2 + 18^2 - their \ 11.25^2}{2 \times 9 \times 18} \quad or \quad \frac{55}{64}$$

M1dep

Obtaining one angle

A1

Substitution into $\frac{1}{2}$ ab sin C

 $\frac{1}{2} \times \text{their } 11.25 \times 9 \times \text{sin their } 125$ $\frac{1}{2} \times \text{their } 11.25 \times 18 \times \text{sin their } 24$ $\frac{1}{2} \times 18 \times 9 \times \text{sin their } 31$ oe $\frac{1}{2} \times 4 \times 5 \times \text{sin their } 125$ $\frac{1}{2} \times 5 \times 8 \times \text{sin their } 24$ $\frac{1}{2} \times 4 \times 8 \times \text{sin their } 31$

[41, 42]

A1

M1

[6]